Fluid transport across leaky epithelia: central role of the tight junction and supporting role of aquaporins.

نویسنده

  • Jorge Fischbarg
چکیده

The mechanism of epithelial fluid transport remains unsolved, which is partly due to inherent experimental difficulties. However, a preparation with which our laboratory works, the corneal endothelium, is a simple leaky secretory epithelium in which we have made some experimental and theoretical headway. As we have reported, transendothelial fluid movements can be generated by electrical currents as long as there is tight junction integrity. The direction of the fluid movement can be reversed by current reversal or by changing junctional electrical charges by polylysine. Residual endothelial fluid transport persists even when no anions (hence no salt) are being transported by the tissue and is only eliminated when all local recirculating electrical currents are. Aquaporin (AQP) 1 is the only AQP present in these cells, and its deletion in AQP1 null mice significantly affects cell osmotic permeability (by ∼40%) but fluid transport much less (∼20%), which militates against the presence of sizable water movements across the cell. In contrast, AQP1 null mice cells have reduced regulatory volume decrease (only 60% of control), which suggests a possible involvement of AQP1 in either the function or the expression of volume-sensitive membrane channels/transporters. A mathematical model of corneal endothelium we have developed correctly predicts experimental results only when paracellular electro-osmosis is assumed rather than transcellular local osmosis. Our evidence therefore suggests that the fluid is transported across this layer via the paracellular route by a mechanism that we attribute to electro-osmotic coupling at the junctions. From our findings we have developed a novel paradigm for this preparation that includes 1) paracellular fluid flow; 2) a crucial role for the junctions; 3) hypotonicity of the primary secretion; and 4) an AQP role in regulation rather than as a significant water pathway. These elements are remarkably similar to those proposed by the laboratory of Adrian Hill for fluid transport across other leaky epithelia.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Claudin-2, a component of the tight junction, forms a paracellular water channel.

Whether or not significant amounts of water pass the tight junction (TJ) of leaky epithelia is still unresolved, because it is difficult to separate transcellular water flux from TJ-controlled paracellular water flux. Using an approach without differentiating technically between the transcellular and paracellular route, we measured transepithelial water flux with and without selective molecular...

متن کامل

Water does not flow across the tight junctions of MDCK cell epithelium.

Although it has been known for decades that the tight junctions of fluid-transporting epithelia are leaky to ions, it has not been possible to determine directly whether significant transjunctional water movement also occurs. An optical microscopic technique was developed for the direct visualization of the flow velocity profiles within the lateral intercellular spaces of a fluid-absorptive, cu...

متن کامل

Role of the septate junction in the regulation of paracellular transepithelial flow

A comparison of the distribution of septate junctions in invertebrate epithelia and tight junctions in vertebrate systems suggests that these structures may be functionally analogous. This proposition is supported by the internal design of each junction which constitutes a serial arrangement of structures crossing the intercellular space between cells to effectively provide resistance to the pa...

متن کامل

Aquaporin water channels and lung physiology.

Fluid transport across epithelial and endothelial barriers occurs in the neonatal and adult lungs. Biophysical measurements in the intact lung and cell isolates have indicated that osmotic water permeability is exceptionally high across alveolar epithelia and endothelia and moderately high across airway epithelia. This review is focused on the role of membrane water-transporting proteins, the a...

متن کامل

Aquaporin water channels in transepithelial fluid transport.

Aquaporins (AQPs) are membrane water channels that are involved in a diverse set of functions in mammalian physiology including epithelial fluid transport, brain water balance, cell migration, cell proliferation, neuroexcitation, fat metabolism, epidermal hydration, and others. Phenotype analysis of knockout mice has demonstrated an important role for AQPs in transepithelial fluid transport in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physiological reviews

دوره 90 4  شماره 

صفحات  -

تاریخ انتشار 2010